
SipHash: a fast short-input PRF

Jean-Philippe Aumasson1 and Daniel J. Bernstein2

1 NAGRA
Switzerland

jeanphilippe.aumasson@gmail.com
2 Department of Computer Science

University of Illinois at Chicago, Chicago, IL 60607–7045, USA
djb@cr.yp.to

Abstract. SipHash is a family of pseudorandom functions optimized for
short inputs. Target applications include network traffic authentication
and hash-table lookups protected against hash-flooding denial-of-service
attacks. SipHash is simpler than MACs based on universal hashing, and
faster on short inputs. Compared to dedicated designs for hash-table
lookup, SipHash has well-defined security goals and competitive perfor-
mance. For example, SipHash processes a 16-byte input with a fresh key
in 140 cycles on an AMD FX-8150 processor, which is much faster than
state-of-the-art MACs. We propose that hash tables switch to SipHash
as a hash function.

1 Introduction

A message-authentication code (MAC) produces a tag t from a message m and
a secret key k. The security goal for a MAC is for an attacker, even after seeing
tags for many messages (perhaps selected by the attacker), to be unable to guess
tags for any other messages.

Internet traffic is split into short packets that require authentication. A 2000
note by Black, Halevi, Krawczyk, Krovetz, and Rogaway [11] reports that “a
fair rule-of-thumb for the distribution on message-sizes on an Internet backbone
is that roughly one-third of messages are 43 bytes (TCP ACKs), one-third are
about 256 bytes (common PPP dialup MTU), and one-third are 1500 bytes
(common Ethernet MTU).”

However, essentially all standardized MACs and state-of-the-art MACs are
optimized for long messages, not for short messages. Measuring long-message
performance hides the overheads caused by large MAC keys, MAC initialization,
large MAC block sizes, and MAC finalization. These overheads are usually quite
severe, as illustrated by the examples in the following paragraphs. Applications
can compensate for these overheads by authenticating a concatenation of several
packets instead of authenticating each packet separately, but then a single forged

This work was supported by the National Science Foundation under grant
1018836. Permanent ID of this document: b9a943a805fbfc6fde808af9fc0ecdfa.
Date: 2012.09.18.

2 Jean-Philippe Aumasson and Daniel J. Bernstein

packet forces several packets to be retransmitted, increasing the damage caused
by denial-of-service attacks.

Our first example is HMAC-SHA-1, where overhead effectively adds between
73 and 136 bytes to the length of a message: for example, HMAC-SHA-1 requires
two 64-byte compression-function computations to authenticate a short message.
Even for long messages, HMAC-SHA-1 is not particularly fast: for example,
the OpenSSL implementation takes 7.8 cycles per byte on Sandy Bridge, and
11.2 cycles per byte on Bulldozer. In general, building a MAC from a general-
purpose cryptographic hash function appears to be a highly suboptimal ap-
proach: general-purpose cryptographic hash functions perform many extra com-
putations for the goal of collision resistance on public inputs, while MACs have
secret keys and do not need collision resistance.

Much more efficient MACs combine a large-input universal hash function
with a short-input encryption function. A universal hash function h maps a long
message m to a short hash h(k1,m) under a key k1. “Universal” means that
any two different messages almost never produce the same output when k1 is
chosen randomly; a typical universal hash function exploits fast 64-bit multipliers
to evaluate a polynomial over a prime field. This short hash is then strongly
encrypted under a second key k2 to produce the authentication tag t. The original
Wegman–Carter MACs [34] used a one-time pad for encryption, but of course
this requires a very long key. Modern proposals such as UMAC version 2 [11],
Poly1305-AES [5], and VMAC(AES) [25] [14] replace the one-time pad with
outputs of AES-128: i.e., t = h(k1,m)⊕AES(k2, n) where n is a nonce. UMAC
version 1 argued that “using universal hashing to reduce a very long message to
a fixed-length one can be complex, require long keys, or reduce the quantitative
security” [10, Section 1.2] and instead defined t = HMAC-SHA-1(h(k,m), n)
where h(k,m) is somewhat shorter than m.

All of these MACs are optimized for long-message performance, and suffer
severe overheads for short messages. For example, the short-message performance
of UMAC version 1 is obviously even worse than the short-message performance
of HMAC-SHA-1. All versions of UMAC and VMAC expand k1 into a very
long key (for example, 4160 bytes in one proposal), and are timed under the
questionable assumptions that the very long key has been precomputed and
preloaded into L1 cache. Poly1305-AES does not expand its key but still requires
padding and finalization in h, plus the overhead of an AES call.

(We comment that, even for applications that emphasize long-message perfor-
mance, the structure of these MACs often significantly complicates deployment.
Typical universal MACs have lengthy specifications, are not easy to implement
efficiently, and are not self-contained: they rely on extra primitives such as AES.
Short nonces typically consume 8 bytes of data with each tag, and force applica-
tions to be stateful to ensure uniqueness; longer nonces consume even more space
and require either state or random-number generation. There have been propos-
als of nonceless universal MACs, but those proposals are significantly slower than
other universal MACs at the same security level; see, e.g., [4, Theorem 9.2].)

SipHash: a fast short-input PRF 3

The short-input performance problems of high-security MACs are even more
clear in another context. As motivation we point to the recent rediscovery of
“hash flooding” denial-of-service attacks on Internet servers that store data in
hash tables. These servers normally use public non-cryptographic hash functions,
and these attacks exploit multicollisions in the hash functions to enforce worst-
case lookup time. See Section 7 of this paper for further discussion.

Replacing the public non-cryptographic hash functions with strong small-
output secret-key MACs would solve this problem. However, to compete with
existing non-cryptographic hash functions, the MACs must be extremely fast for
very short inputs, even shorter than the shortest common Internet packets. For
example, Ruby on Rails applications are reported to hash strings shorter than 10
bytes on average. Recent hash-table proposals such as Google’s CityHash [18]
and Jenkins’ SpookyHash [21] provide very fast hashing of short strings, but
these functions were designed to have a close-to-uniform distribution, not to
meet any particular cryptographic goals. For example, collisions were found in
an initial version of CityHash128 [22], and the current version is vulnerable to
a practical key-recovery attack when 64-bit keys are used.

This paper introduces the SipHash family of hash functions to address the
needs for high-security short-input MACs. SipHash features include:

• High security. Our concrete proposal SipHash-2-4 was designed and eval-
uated to be a cryptographically strong PRF (pseudorandom function), i.e.,
indistinguishable from a uniform random function. This implies its strength
as a MAC.

• High speed. SipHash-2-4 is much faster for short inputs than previous
strong MACs (and PRFs), and is competitive in speed with popular non-
cryptographic hash functions.

• Key agility. SipHash uses a 128-bit key. There is no key expansion in setting
up a new key or hashing a message, and there is no hidden cost of loading
precomputed expanded keys from DRAM into L1 cache.

• Simplicity. SipHash iterates a simple round function consisting of four ad-
ditions, four xors, and six rotations, interleaved with xors of message blocks.

• Autonomy. No external primitive is required.
• Small state. The SipHash state consists of four 64-bit variables. This small

state size allows SipHash to perform well on a wide range of CPUs and to
fit into small hardware.

• No state between messages. Hashing is deterministic and doesn’t use
nonces.

• No software side channels. Many cryptographic functions, notably AES,
encourage implementors to use secret load/store addresses or secret branch
conditions, often allowing timing attacks. SipHash avoids this problem.

• Minimal overhead. Authenticated messages are just 8 bytes longer than
original messages.

§2 presents a complete definition of SipHash; §3 makes security claims; §4 ex-
plains some design choices; §5 reports on our preliminary security analysis; §6
evaluates the efficiency of SipHash in software and hardware; §7 discusses the
benefits of switching to SipHash for hash-table lookups.

4 Jean-Philippe Aumasson and Daniel J. Bernstein

2 Specification of SipHash

SipHash is a family of PRFs SipHash-c-d where the integer parameters c and d
are the number of compression rounds and the number of finalization rounds. A
compression round is identical to a finalization round and this round function is
called SipRound. Given a 128-bit key k and a (possibly empty) byte string m,
SipHash-c-d returns a 64-bit value SipHash-c-d(k,m) computed as follows:

1. Initialization: Four 64-bit words of internal state v0, v1, v2, v3 are initialized
as

v0 = k0 ⊕ 736f6d6570736575

v1 = k1 ⊕ 646f72616e646f6d

v2 = k0 ⊕ 6c7967656e657261

v3 = k1 ⊕ 7465646279746573

where k0 and k1 are the little-endian 64-bit words encoding the key k.
2. Compression: SipHash-c-d processes the b-byte string m by parsing it as
w = d(b + 1)/8e > 0 64-bit little-endian words m0, . . . ,mw−1 where mw−1
includes the last 0 through 7 bytes of m followed by null bytes and ending
with a byte encoding the positive integer b mod 256. For example, the one-
byte input string m = ab is parsed as m0 = 01000000000000ab. The mi’s are
iteratively processed by doing

v3 ⊕ = mi

and then c iterations of SipRound, followed by

v0 ⊕ = mi

3. Finalization: After all the message words have been processed, SipHash-c-d
xors the constant ff to the state:

v2 ⊕ = ff

then does d iterations of SipRound, and returns the 64-bit value

v0 ⊕ v1 ⊕ v2 ⊕ v3 .

Fig. 2.1 shows SipHash-2-4 hashing a 15-byte m.

The function SipRound transforms the internal state as follows (see also Fig.2.2):

v0 + = v1 v2 + = v3
v1 ≪= 13 v3 ≪= 16
v1⊕ = v0 v3⊕ = v2
v0 ≪= 32
v2 + = v1 v0 + = v3
v1 ≪= 17 v3 ≪= 21
v1⊕ = v2 v3⊕ = v0
v2 ≪= 32

SipHash: a fast short-input PRF 5

736f6d6570736575

646f72616e646f6d

6c7967656e657261

7465646279746573

gggg

k0 k1

k0 k1

g
m0

S
ip

R
o
u
n
d

S
ip

R
o
u
n
d

g
m0

g
m1

S
ip

R
o
u
n
d

S
ip

R
o
u
n
d

g
m1

g
ff

S
ip

R
o
u
n
d

S
ip

R
o
u
n
d

S
ip

R
o
u
n
d

S
ip

R
o
u
n
d i

�
�

J
J
JHH -

Fig. 2.1. SipHash-2-4 processing a 15-byte message. SipHash-2-4(k,m) is the output
from the final ⊕ on the right.

v0 - ≪ 32-�
���

B
B
BB

- ≪ 32-�
���

B
B
BB

- v0

v1 -
@
@
@R

≪ 13 - i -
@
@
@R

≪ 17 - i - v1

v2 -
@
@
@R

�
�
��

-
@
@
@R

�
�
��

- v2

v3 -�
���

≪ 16 - i -�
���

≪ 21 - i - v3

Fig. 2.2. The ARX network of SipRound.

3 Expected strength

SipHash-c-d with c ≥ 2 and d ≥ 4 is expected to provide the maximum PRF
security possible (and therefore also the maximum MAC security possible) for
any function with the same key size and output size. Our fast proposal is thus
SipHash-2-4. We define SipHash-c-d for larger c and d to provide a higher security
margin: our conservative proposal is SipHash-4-8, which is about half the speed
of SipHash-2-4. We define SipHash-c-d for smaller c and d to provide targets for
cryptanalysis. Cryptanalysts are thus invited to break

• SipHash-1-0, SipHash-2-0, SipHash-3-0, SipHash-4-0, etc.;
• SipHash-1-1, SipHash-2-1, SipHash-3-1, SipHash-4-1, etc.;
• SipHash-1-2, SipHash-2-2, SipHash-3-2, SipHash-4-2, etc.;

and so on.
Note that the standard PRF and MAC security goals allow the attacker ac-

cess to the output of SipHash on messages chosen adaptively by the attacker.
However, they do not allow access to any “leaked” information such as bits of

6 Jean-Philippe Aumasson and Daniel J. Bernstein

the key or the internal state. They also do not allow “related keys”, “known
keys”, “chosen keys”, etc.

Of course, security is limited by the key size (128 bits). In particular, attackers
searching 2s keys have chance 2s−128 of finding the SipHash key. This search is
accelerated in standard ways by speedups in evaluation and partial evaluation of
SipHash, for one key or for a batch of keys; by attacks against multiple targets;
and by quantum computers.

Security is also limited by the output size (64 bits). In particular, when
SipHash is used as a MAC, an attacker who blindly tries 2s tags will succeed
with probability 2s−64.

We comment that SipHash is not meant to be, and (obviously) is not, collision-
resistant.

4 Rationale

SipHash is an ARX algorithm, like the SHA-3 finalists BLAKE [3] and Skein
[16]. SipHash follows BLAKE’s minimalism (small code, small state) but borrows
the two-input MIX from Skein, with two extra rotations to improve diffusion.
SipHash’s input injection is inspired by another SHA-3 finalist, JH [36].

Choice of constants. The initial state constant corresponds to the ASCII string
“somepseudorandomlygeneratedbytes”, big-endian encoded. There is nothing
special about this value; the only requirement was some asymmetry so that
the initial v0 and v1 differ from v2 and v3. This constant may be set to a “per-
sonalization string” but we have not evaluated whether it can safely be chosen as
a “tweak”. Note that two nonzero words of initialization constants would have
been as safe as four.

The other constant in SipHash is ff, as xored to v2 in finalization. We could
have chosen any other non-zero value. Without this constant, one can reach the
internal state after finalization by just absorbing null words. We found no way
to exploit this property, but we felt it prudent to avoid it given the low cost of
the defense.

Choice of rotation counts. Finding really bad rotation counts for ARX algo-
rithms turns out to be difficult. For example, randomly setting all rotations in
BLAKE-512 or Skein to a value in {8, 16, 24, . . . , 56} may allow known attacks
to reach slightly more rounds, but no dramatic improvement is expected.

The advantage of choosing such “aligned” rotation counts is that aligned rota-
tion counts are much faster than unaligned rotation counts on many non-64-bit
architectures. Many 8-bit microcontrollers have only 1-bit shifts of bytes, so
rotation by (e.g.) 3 bits is particularly expensive; implementing a rotation by
a mere permutation of bytes greatly speeds up ARX algorithms. Even 64-bit
systems can benefit from alignment, when a sequence of shift-shift-xor can be
replaced by SSSE3’s pshufb byte-shuffling instruction. For comparison, imple-
menting BLAKE-256’s 16- and 8-bit rotations with pshufb led to a 20% speedup
on Intel’s Nehalem microarchitecture.

SipHash: a fast short-input PRF 7

For SipHash, the rotation distances were chosen as a tradeoff between secu-
rity and performance, with emphasis on the latter. We ran an automated search
that picks random rotation counts, estimates the number of significant statistical
biases on three SipRounds with respect to a specific significance threshold, and
finally sorts the sets of rotation counts according to that metric. We then manu-
ally shortlisted a few sets, by choosing the ones with rotation counts the closest
to multiples of eight. We changed some of those values to the closest multiple of
eight and benchmarked them against our original security metric, and repeated
this process several times until finding a satisfying set of rotation counts.

We chose counts 13, 16, 17, and 21 for the rotations in the two MIX layers:
13 and 21 are three bits away from a multiple of 8, whereas 17 is just one bit
away, and 16 can be realized by byte permutation only. We aggressively set the
two “asymmetric” rotation counts to 32 to minimize the performance penalty—
it is just a swap of words on 32-bit systems. The 32-bit rotations significantly
improve diffusion, and their position on the ARX network allows for an efficient
scheduling of instructions.

Choice of injection structure. Like JH, SipHash injects input before and after
each block, with the difference that SipHash leaves less freedom to attackers:
whereas JH xors the message block to the two halves of the state before and
after the permutation, SipHash xors a block to two quarters of the state. Any
attack on the SipHash injection structure can be applied to the JH injection
structure, so security proofs for the JH injection structure [30] also apply to the
SipHash injection structure.

A basic advantage of the JH/SipHash injection structure compared to the
sponge/Keccak [7] injection structure is that message blocks of arbitrary length
(up to half the state) can be absorbed without reducing preimage security. A
disadvantage is that each message block must be retained while the state is being
processed, but for SipHash this extra storage is only a quarter of the state.

Choice of padding rule. SipHash’s padding appends a byte encoding the
message length modulo 256. We could have chosen a slightly simpler padding
rule, such as appending a 80 byte followed by zeroes. However, our choice forces
messages of different lengths modulo 256 to have different last blocks, which may
complicate attacks on SipHash; the extra cost is negligible.

5 Preliminary cryptanalysis

We first consider attacks that are independent of the SipRound algorithm, and
thus that are independent of the c and d parameters. We then consider attacks
on SipRound iterations, with a focus on our proposal SipHash-2-4.

Key-recovery. Brute force will recover a key after on average 2127 evaluations
of SipHash, given two input/output pairs (one being insufficient to uniquely
identify the key). The optimal strategy is to work with 1-word padded messages,
so that evaluating SipHash-c-d takes c+ d SipRounds.

8 Jean-Philippe Aumasson and Daniel J. Bernstein

State-recovery. A simple strategy to attack SipHash is to choose three input
strings identical except for their last word, query for their respective SipHash
outputs, and then “guess” the state that produced the output v0⊕v1⊕v2⊕v3 for
one of the two strings. The attacker checks the 192-bit guessed value against the
two other strings, and eventually recovers the key. On average d2191 evaluations
of SipRound are computed.

Internal collisions. As for any MAC with 256-bit internal state, internal col-
lisions can be exploited to forge valid tags with complexity of the order of 2128

queries to SipHash. The padding of the message length forces attackers to search
for collisions at the same position modulo 256 bytes.

Truncated differentials. To assess the strength of SipRound, we applied the
same techniques that were used [2] to attack Salsa20, namely a search for sta-
tistical biases in one or more bits of output given one or more differences in the
input. We considered input differences in v3 and sought biases in v0⊕v1⊕v2⊕v3
after iterating SipRound.

The best results were obtained by setting a 1-bit difference in the most sig-
nificant bit of v3. After three iterations of SipRound many biases are found. But
after four or more iterations we did not detect any bias after experimenting with
sets of 230 samples.

To attempt to distinguish our fast proposal SipHash-2-4 by exploiting such
statistical biases, one needs to find a bias on six rounds such that no input
difference lies in the most significant byte of the last word (as this encodes the
message length).

XOR-linearized characteristics. We considered an attacker who injects a
difference in the first message word processed by SipHash-2-4, and then that
guesses the difference in v3 every two SipRounds in order to cancel it with the
new message word processed. This ensures that at least a quarter of the internal
state is free of difference when entering a new absorption phase. Note that such
an omniscient attacker would require the leakage of v3 every two SipRounds,
and thus is not covered by our security claims in §3.

We used Leurent’s ARX toolkit [27] to verify that our characteristics contain
no obvious contradiction, and to obtain refined probability estimates. Table 5.1
shows the best characteristic we found: after two rounds there are 20 bit dif-
ferences in the internal state, with differences in all four words. The message
injection reduces this to 15 bit differences (with no difference in v3), and after
two more rounds there are 96 bit differences. The probability to follow this dif-
ferential characteristic is estimated to be 2−134. For comparison, Table 5.2 shows
the characteristic obtained with the same input difference, but for an attacker
who does not guess the difference in v3: the probability to follow four rounds of
the characteristic is estimated to be 2−159.

Better characteristics may exist. However we expect that finding (collections
of) characteristics that both have a high probability and are useful to attack
SipHash is extremely difficult. SipRound has as many additions as xors, so lin-

SipHash: a fast short-input PRF 9

Round Differences Prob.

1
................ 8...............

1 (1)
................ 8............... 8...........8...

2
8...........8... 8...............8....... 8.....1...1.8...

13 (14)
....8...........9... 8.....1.8.1.8... 8.1.......1.....

3
..1.8.....1..... 8.....11a.1.1... 8.1.1...8.....1.

33 (47)
a...1...8.1.8.11 8.12b413a2...... 8.1.1...8.....1. 8.1.1...8.....1.

4
2.1.......1.8..1 6825e.1322.1..35 22....1....2a413 2........2..82.3

87 (134)
22118.344835e.13 f4378453.2172d3. .2....1..2.2261. .2...21.8..1.61.

5
a..1..24c834e4.3 fe918.6d5a74e34f ..15.b2.f6378443

145 (279)
924..74c5e9.8.49 6e9d2b.7.e29f89e ..15.b2.f6378443 ..15.b2.f6378443

6
9255.c6ca8a7.4.a 38863c74.922a1e7 f81e7cdd6e882.27 f64bca9c2.c7.6ab

160 (439)
a185a5edaad33.18 6d5db13cf5b942fd .e55b6414e4f268c c4c9968648e4d.c7

Table 5.1. For each SipRound, differences in v0, v1, v2, v3 before each half-round in the
xor-linear model. Every two rounds a message word is injected that cancels the differ-
ence in v3; the difference used is then xored to v0 after the two subsequent rounds. The
probability estimate is given for each round, with the cumulative value in parentheses.

earization with respect to integer addition seems unlikely to give much better
characteristics than xor-linearization.

Vanishing characteristics. A particularly useful class of differential character-
istics is that of vanishing characteristics: those start from a non-zero difference
and yield an internal state with no difference, that is, an internal collision. Van-
ishing characteristics obviously do not exist for any iteration of SipRound; one
has to consider characteristics for the function consisting of SipRound iterations
followed by v0⊕ = ∆, with an input difference ∆ in v3.

No vanishing characteristic exists for one SipRound, as a non-zero difference
always propagates to v2. We ensured that no vanishing xor-linear characteristic
exists for iterations of two, three, or four SipRounds, by attempting to solve the
corresponding linear system. For sequences of two words, we ensured that no
sparse vanishing characteristic exists.

Other attacks. We briefly examine the applicability of other attacks to attack
SipHash:

• Rotational attacks are differential attacks with respect to the rotation oper-
ator; see, e.g., [6, Section 4] and [23]. Due to the asymmetry in the initial
state—at most half of the initial state can be rotation-invariant—rotational
attacks are ineffective against SipHash.

• Cube attacks [26] exploit a low algebraic degree in the primitive attacked.
Due to the rapid growth of the degree in SipHash, as in other ARX primitives,
cube attacks are unlikely to succeed.

• Rebound attacks [28] are not known to be relevant for keyed primitives.

10 Jean-Philippe Aumasson and Daniel J. Bernstein

Round Differences Prob.

1
................ 8...............

1 (1)
................ 8............... 8...........8...

2
8...........8... 8...............8....... 8.....1...1.8...

13 (14)
....8...........9... 8.....1.8.1.8... 8.1.......1.....

3
..1.8.....1..... 8.....11a.1.1... 8.1.1...8.....1. 8.1.82.......2..

42 (56)
a...1...8.1.8.11 8.12b413a2......92..8....21. 82..92..82..82..

4
22..82...21..211 e835621322.1.235 22...21.8.122613 621.c21.42..42.3

103 (159)
2.11..24ca35e.13 66778453..57bd22 4.1.c...c212641. 82..82..8.11.6..

5
a21182244a24e613 2ec144fcb8.115dd c245d93226674453 e2.18..48a34a6.3

152 (311)
f225f3ce8cd.c6d8 a44f51d8d.9e5616 2.445936ac53e25. a.4.d3.2.a5...51

6
52652.cc868.c689 27baa9d2d.e.fcd8 7ccdb44684.b.8ee 32246acc8cb4ce93

187 (498)
566.3a5175df891e 2.e5d3.249fb3ea6 4ee9de8a.8bfc67d 2425523ec62cf459

Table 5.2. For each SipRound, differences in v0, v1, v2, v3 before each half-round in
the xor-linear model. Every two rounds a message with no difference is injected. The
probability estimate is given for each half-round, with the cumulative value in paren-
theses.

Fixed point. Any iteration of SipRound admits a trivial distinguisher: the
zero-to-zero fixed-point. This may make theoretical arguments based on the
“ideal permutation” assumption irrelevant. But exploiting this property to at-
tack SipHash seems very hard, for

1. Hitting the all-zero state, although easy to verify, is expected to be as hard
as hitting any other predefined state;

2. The ability to hit a predefined state implies the ability to recover the key,
that is, to completely break SipHash.

That is, the zero-to-zero fixed point cannot be a significant problem for SipHash,
for if it were, SipHash would have much bigger problems.

6 Performance

Lower bounds for a 64-bit implementation. SipRound involves 14 64-bit
operations, so SipHash-2-4 involves 30 64-bit operations for each 8 bytes of input,
i.e., 3.75 operations per byte. A CPU core with 2 64-bit arithmetic units needs
at least 1.875 cycles per byte for SipHash-2-4, and a CPU core with 3 64-bit
arithmetic units needs at least 1.25 cycles per byte for SipHash-2-4. A CPU core
with 4 64-bit arithmetic units needs at least 1 cycle per byte, since SipRound
does not always have 4 operations to perform in parallel.

The cost of finalization cannot be ignored for short messages. For example, for
an input of length between 16 and 23 bytes, a CPU core with 3 64-bit arithmetic
units needs at least 49 cycles for SipHash-2-4.

SipHash: a fast short-input PRF 11

Data byte length 8 16 24 32 40 48 56 64

“bulldozer”
Cycles 124 141 156 171 188 203 218 234

Cycles per byte 15.50 8.81 6.50 5.34 4.70 4.23 3.89 3.66

“ishmael”
Cycles 123 134 145 158 170 182 192 204

Cycles per byte 15.38 8.38 6.00 4.94 4.25 3.79 3.43 3.19

“latour”
Cycles 135 144 162 171 189 207 216 225

Cycles per byte 16.88 10.29 6.75 5.34 4.50 4.31 3.86 3.52

Table 6.1. Speed measurements of SipHash-2-4 for short messages.

Lower bounds for a 32-bit implementation. 32-bit architectures are com-
mon in embedded systems, with for example processors of the ARM11 fam-
ily implementing the ARMv6 architecture. To estimate SipHash’s efficiency on
ARM11, we can directly adapt the analysis of Skein’s performance by Schwabe,
Yang, and Yang [31, §7], which observes that six 32-bit instructions are sufficient
to perform a MIX transform. Since SipRound consists of four MIX transforms—
the 32-bit rotate is transparent—we obtain 24 instructions per SipRound, that
is, a lower bound of 3c cycles per byte for SipHash on long messages. This is
6 cycles per byte for SipHash-2-4. An input of length between 16 and 23 bytes
needs at least 240 cycles.

Implementation results. We wrote a portable C implementation of SipHash,
and ran preliminary benchmarks on three machines:

• “bulldozer”, a Linux desktop equipped with a processor from AMD’s last
generation (FX-8150, 4× 3600 MHz, “Zambezi” core), using gcc 4.5.2;

• “ishmael”, a Linux laptop equipped with a processor from AMD’s previ-
ous generation (Athlon II Neo Mobile, 1700 MHz, “Geneva” core), using gcc

4.6.3.
• “latour”, a Linux desktop equipped with an older Intel processor (Core 2

Quad Q6600, 2394 MHz, “Kentsfield” core), using gcc 4.4.3.

We used compiler options -O3 -fomit-frame-pointer -funroll-loops.
On “bulldozer”, our C implementation of SipHash-2-4 processes long mes-

sages at a speed of 1.96 cycles per byte. On “ishmael”, SipHash-2-4 reaches 1.44
cycles per byte; this is due to the Athlon II’s K10 microarchitecture having three
ALUs, against only two for the more recent Bulldozer. Similar comments apply
to “latour”. These speeds are close to the lower bounds reported in §6, with
respective gaps of approximately 0.10 and 0.20 cycles per byte.

Table 6.1 reports speeds on short messages. For comparison, the fastest SHA-3
finalist on “bulldozer” (BLAKE-512) takes approximately 1072 cycles to process
8 bytes, and 1280 cycles to process 64 bytes.

Figure 6.1 compares our implementation of SipHash on “bulldozer” with the
optimized C++ and C implementations of CityHash (version CityHash64) and
SpookyHash (version ShortHash) on short messages, as well as with OpenSSL’s

12 Jean-Philippe Aumasson and Daniel J. Bernstein

MD5 implementation. Similar relative performance is observed on the other ma-
chines considered.

One can see from these tables that SipHash-2-4 is extremely fast, and com-
petitive with non-cryptographic hashes. For example, hashing 16 bytes takes 141
Bulldozer cycles with SipHash-2-4, against 82 and 126 for CityHash and Spooky-
Hash, and 600 for MD5. Our conservative proposal SipHash-4-8 is still twice as
fast as MD5.

Fig. 6.1. Performance of SipHash-2-4 compared to non-cryptographic hash functions
CityHash and SpookyHash and to MD5 on “bulldozer” (AMD FX-8150), for messages
of 1, 2, . . . , 128 bytes. Curves on the right, from top to bottom, are MD5, SipHash,
SpookyHash, and CityHash.

Automated benchmarks. After the initial publication of SipHash, third-party
applications were written in various programming languages, including C, C#,
Javascript, Ruby, etc. In particular, Samuel Neves wrote optimized C implemen-
tations of SipHash compliant with the crypto auth interface of the SUPERCOP
benchmarking software. These implementations (little, mmx, sse2-1, sse41)
as well as our reference implementation (ref le) were added to SUPERCOP
and benchmarked on various machines. A subset of the results are reported in
Table 6.2.

Hardware efficiency. ASICs can integrate SipHash with various degrees of
area/throughput tradeoffs, with the following as extreme choices:

• Compact architecture with a circuit for a half-SipRound only, that is,
two 64-bit full adders, 128 xors, and two rotation selectors. For SipHash-

SipHash: a fast short-input PRF 13

Table 6.2. Performance of SipHash-2-4 on processors based on the amd64 64-bit ar-
chitecture, in cycles per byte.

Processor Microarchitecture (core) Long 64 8

AMD FX-8120 Bulldozer (Zambezi) 1.95 3.75 16.25
AMD E-450 Bobcat (Ontario) 2.03 4.88 22.88
AMD A8-3850 K10 (Llano) 1.44 3.61 26.50
AMD Athlon 64 X2 K8 (Windsor) 1.50 2.91 11.12
Intel Core i3-2310M Sandy Bridge (206a7) 2.98 6.12 20.50
Intel Atom N435 Bonnell (Pineview) 2.19 4.50 20.00
Intel Xeon E5620 Nehalem (Westmere-EP) 1.63 2.81 11.50
Intel Core 2 Duo E8400 Core (Wolfdale) 1.69 3.38 13.50
VIA Nano U3500 Isaiah 2.38 4.53 17.50

c-d this corresponds a latency of c/4 cycles per byte plus 2d cycles for the
finalization.

• High-speed architecture with a circuit for e = max(c, d) rounds, that is,
4e 64-bit full adders and 256e xors. For SipHash-c-d this corresponds to a
latency of 1/8 cycle per byte plus one cycle for finalization.

Both architectures require 256 D-flip-flops to store the internal state, plus 64 for
the message blocks. For a technology with 8 gate-equivalents (GE) per full adder,
3 per xor, and 7 per D-flip-flop, this is a total of approximately 3700 GE for the
compact architecture of SipHash-2-4, and 13500 GE for the high-speed architec-
ture. With the compact architecture a 20-byte message is hashed by SipHash-2-4
in 20 cycles, against 4 cycles with the high-speed architecture. An architecture
implementing c = 2 rounds of SipHash-2-4 would take approximately 7900 GE
to achieve a latency of 1/8 cycles per byte plus two cycles for finalization, thus
5 cycles to process 20 bytes.

7 Application: defense against hash flooding

We propose that hash tables switch to SipHash as a hash function. On startup a
program reads a secret SipHash key from the operating system’s cryptographic
random-number generator; the program then uses SipHash for all of its hash
tables. This section explains the security benefits of SipHash in this context.

The small state of SipHash also allows each hash table to have its own key
with negligible space overhead, if that is more convenient. Any attacks must
then be carried out separately for each hash table.

Review of hash tables. Storing n strings in a linked list usually takes a total
of Θ(n2) operations, and retrieving one of the n strings usually takes Θ(n)
operations. This can be a crippling performance problem when n is large.

Hash tables are advertised as providing much better performance. The sim-
plest type of hash table contains ` separate linked lists L[0], L[1], . . . , L[` − 1]
and stores each string m inside the linked list L[H(m) mod `], where H is a hash

14 Jean-Philippe Aumasson and Daniel J. Bernstein

function and ` is a power of 2. Each linked list then has, on average, only n/`
strings. Normally this improves performance by a factor close to n if ` is chosen
to be on the same scale as n: storing n strings usually takes only Θ(n) operations
and retrieving a string usually takes Θ(1) operations.

There are other data structures that guarantee, e.g., O(n lg n) operations to
store n strings and O(lg n) operations to retrieve one string. These data struc-
tures avoid all of the security problems discussed below. However, hash tables
are perceived as being simpler and faster, and as a result are used pervasively
throughout current programming languages, libraries, and applications.

Review of hash flooding. Hash flooding is a denial-of-service attack against
hash tables. The attacker provides n strings m that have the same hash value
H(m), or at least the same H(m) mod `. The hash-table performance then de-
teriorates to the performance of one linked list.

The name “hash flooding” for this attack appeared in 1999, in the source
code for the first release of the dnscache software from the second author of this
paper:

if (++loop > 100) return 0; /* to protect against hash flooding */

This line of code protects dnscache against the attack by limiting each linked
list to 100 entries. However, this is obviously not a general-purpose solution to
hash flooding. Caches can afford to throw away unusual types of data, but most
applications need to store all incoming data.

Crosby and Wallach reintroduced the same attack in 2003 under the name
“algorithmic complexity attack” [13] and explored its applicability to the Squid
web cache, the Perl programming language, etc. Hash flooding made headlines
again in December 2011, when Klink and Wälde [24] demonstrated its continued
applicability to several commonly used web applications. For example, Klink and
Wälde reported 500 KB of carefully chosen POST data occupying a PHP5 server
for a full minute of CPU time.

Advanced hash flooding. Crosby and Wallach recommended replacing public
functions H with secret functions, specifically universal hash functions, specifi-
cally the hash function H(m0,m1, . . .) = m0 · k0 + m1 · k1 + · · · using a secret
key (k0, k1, . . .). The idea is that an attacker has no way to guess which strings
will collide.

We question the security of this approach. Consider, for example, a hash
table containing one string m, where m is known to the attacker. Looking up
another string m′ will, with standard implementations, take longer if H(m′) ≡
H(m) (mod `) than if H(m′) 6≡ H(m) (mod `). This timing information will
often be visible to an attacker, and can be amplified beyond any level of noise
if the application allows the attacker to repeatedly query m′. By guessing `
choices of strings m′ 6= m the attacker finds one with H(m′) ≡ H(m) (mod `).
The linearity of the Crosby–Wallach choice of H then implies that adding any
multiple of m′ − m to m will produce another colliding string. With twice as
many guesses the attacker finds an independent string m′′ with H(m′′) ≡ H(m)
(mod `); then adding any combination of multiples of m′ − m and m′′ − m

SipHash: a fast short-input PRF 15

to m will produce even more collisions. With a moderate number of guesses
the attacker finds enough information to solve for (k0 mod `, k1 mod `, . . .) by
Gaussian elimination, and easily computes any number of strings with the same
hash value.

One can blame the hash-table implementation for leaking information through
timing; but it is not easy to build an efficient constant-time hash table. Even
worse, typical languages and libraries allow applications to see all hash-table
entries in order of hash value, and applications often expose this information to
attackers. One could imagine changing languages and libraries to sort hash-table
entries before enumerating them, but this would draw objections from applica-
tions that need the beginning of the enumeration to start quickly. One could also
imagine changing applications to sort hash-table entries before exposing them
to attackers, but ensuring this would require reviewing code in a huge number
of applications.

We comment that many of the hash-flooding defenses proposed since De-
cember 2011 are vulnerable to the same attack. The most common public hash
functions are of the form m0 · k0 + m1 · k1 + · · · where k0, k1, . . . are public,
and many of the proposed defenses simply add some entropy to k0, k1, . . .; but
the attack works no matter how k0, k1, . . . are chosen. Many more of the pro-
posed defenses are minor variations of this linear pattern and are broken by easy
variants of the same attack.

We do not claim novelty for observing how much damage a single equation
H(m′) ≡ H(m) (mod `) does to the unpredictability of this type of hash func-
tion; see, e.g., the attacks in [9] and [19] against related MACs. However, the
fact that hash tables leak such equations through side channels does not seem
to be widely appreciated.

Stopping advanced hash flooding. The worst possible exposure of hash-table
indices would simply show the attacker H(m) mod ` for any attacker-selected
string m. We advocate protecting against this maximum possible exposure, so
that applications do not have to worry about how much exposure they actually
provide. The attacker’s goal, given this exposure, is to find many strings m
having a single value H(m) mod `.

We propose choosing H to be a cryptographically strong PRF. If H is a strong
PRF then the truncation H mod ` is also a strong PRF (recall that ` is a power
of 2), and therefore a strong MAC: even after seeing H(m) mod ` for selected
strings m, the attacker cannot predict H(m) mod ` for any other string m. The
strength of H as a PRF implies the same unpredictability even if the attacker
is given hash values H(m), rather than just hash-table indices H(m) mod `.
Achieving this level of unpredictability does not appear to be significantly easier
than achieving the full strong-PRF property.

Typical hash-table applications hash a large number of short strings, so the
performance of H on short inputs is critical. We therefore propose choosing
SipHash as H: we believe that SipHash is a strong PRF, and it provides excellent
performance on short inputs. There are previous hash functions with competitive
performance, and there are previous functions that have been proposed and

16 Jean-Philippe Aumasson and Daniel J. Bernstein

evaluated for the same security standards, but as far as we know SipHash is the
first function to have both of these features.

Of course, the attacker’s inability to predict new hash values does not stop
the attacker from exploiting old hash values. No matter how strong H is, the
attacker will find two colliding strings after (on average) about

√
` guesses, and

then further strings with the same hash value for (on average) ` guesses per
collision. However, finding n colliding strings in this way requires the attacker
to communicate about n` ≈ n2 strings, so n—the CPU amplification factor
of the denial-of-service attack—is limited to the square root of the volume of
attacker communication. For comparison, weak secret hash functions and (weak
or strong) public hash functions allow n to grow linearly with the volume of
attacker communication. A strong secret hash function thus greatly reduces the
damage caused by the attack.

The Python hash function. Versions 2.7.3 and 3.2.3 of the Python program-
ming language (released in April 2012) introduced an option -R with the goal of
protecting against hash flooding. According to the Python manual, this option
“[turns] on ‘hash randomization’, so that the hash() values of str, bytes and date-
time objects are ‘salted’ with an unpredictable pseudo-random value. . . . This
is intended to provide protection against a denial of service caused by carefully-
chosen inputs . . . ”. It is therefore expected that outputs of this hash function are
unpredictable to parties who were not given the secret key (the salt); obviously,
if this key is known, outputs are no longer unpredictable.

We point out that the keyed hashing introduced in Python 2.7.3 and 3.2.3
does not behave as an unpredictable function: the 128-bit key can be recovered
efficiently given only two outputs of the keyed hash. The internal state contains
only 64 bits, so multicollisions can be found efficiently with a meet-in-the-middle
strategy once the key is known.

A proof-of-concept Python script is given in Appendix B. We verified our
attack on Python 2.7.3 and 3.2.3, in each case successfully recovering the per-
process key.

References

[1] — (no editor), 20th annual symposium on foundations of computer science, IEEE
Computer Society, New York, 1979. MR 82a:68004. See [33].

[2] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, Chris-
tian Rechberger, New features of Latin dances: analysis of Salsa, ChaCha, and
Rumba, in FSE 2008 [29] (2008), 470–488. URL: http://eprint.iacr.org/2007/
472. Citations in this document: §5.

[3] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, Raphael C.-W. Phan, SHA-
3 proposal BLAKE (version 1.3) (2010). URL: https://www.131002.net/blake/
blake.pdf. Citations in this document: §4.

[4] Daniel J. Bernstein, Floating-point arithmetic and message authentication (2004).
URL: http://cr.yp.to/papers.html#hash127. Citations in this document: §1.

[5] Daniel J. Bernstein, The Poly1305-AES message-authentication code, in [17]
(2005), 32–49. URL: http://cr.yp.to/papers.html#poly1305. Citations in this
document: §1.

http://eprint.iacr.org/2007/472
http://eprint.iacr.org/2007/472
https://www.131002.net/blake/blake.pdf
https://www.131002.net/blake/blake.pdf
http://cr.yp.to/papers.html#hash127
http://cr.yp.to/papers.html#poly1305

SipHash: a fast short-input PRF 17

[6] Daniel J. Bernstein, Salsa20 security, in eSTREAM report 2005/025 (2005). URL:
http://cr.yp.to/snuffle/security.pdf. Citations in this document: §5.

[7] Guido Bertoni, Joan Daemen, Michaeël Peeters, Gilles Van Assche, The
Keccak reference (version 3.0) (2011). URL: http://keccak.noekeon.org/

Keccak-reference-3.0.pdf. Citations in this document: §4.
[8] Eli Biham, Amr M. Youssef (editors), Selected areas in cryptography, 13th inter-

national workshop, SAC 2006, Montreal, Canada, August 17–18, 2006, revised
selected papers, Lecture Notes in Computer Science, 4356, Springer, 2007. ISBN
978-3-540-74461-0. See [25].

[9] John Black, Martin Cochran, MAC reforgeability, in FSE 2009 [15] (2009), 345–
362. URL: http://eprint.iacr.org/2006/095. Citations in this document: §7.

[10] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, Phillip Rogaway, UMAC:
fast and secure message authentication, in Crypto ’99 [35] (1999), 216–233. URL:
http://fastcrypto.org/umac/umac_proc.pdf. Citations in this document: §1.

[11] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, Phillip Rogaway, Update
on UMAC fast message authentication (2000). URL: http://fastcrypto.org/

umac/update.pdf. Citations in this document: §1, §1.
[12] Richard E. Blahut, Daniel J. Costello, Jr., Ueli Maurer, Thomas Mittelholzer

(editors), Communications and cryptography: two sides of one tapestry, Springer,
1994. See [26].

[13] Scott A. Crosby, Dan S. Wallach, Denial of service via algorithmic complexity
attacks, 12th USENIX Security Symposium (2003). URL: http://www.cs.rice.
edu/~scrosby/hash/CrosbyWallach_UsenixSec2003.pdf. Citations in this doc-
ument: §7.

[14] Wei Dai, Ted Krovetz, VHASH security (2007). URL: http://eprint.iacr.org/
2007/338. Citations in this document: §1.

[15] Orr Dunkelman (editor), Fast software encryption, 16th international workshop,
FSE 2009, Leuven, Belgium, February 22–25, 2009, revised selected papers, Lec-
ture Notes in Computer Science, 5665, Springer, 2009. ISBN 978-3-642-03316-2.
See [9].

[16] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Ta-
dayoshi Kohno, Jon Callas, Jesse Walker, The Skein hash function family (ver-
sion 1.1) (2008). URL: http://www.skein-hash.info/sites/default/files/

skein1.1.pdf. Citations in this document: §4.
[17] Henri Gilbert, Helena Handschuh (editors), Fast software encryption: 12th in-

ternational workshop, FSE 2005, Paris, France, February 21–23, 2005, revised
selected papers, Lecture Notes in Computer Science, 3557, Springer, 2005. ISBN
3-540-26541-4. See [5].

[18] Google, The CityHash family of hash functions (2011). URL: https://code.

google.com/p/cityhash/. Citations in this document: §1.
[19] Helena Handschuh, Bart Preneel, Key-recovery attacks on universal hash func-

tion based MAC algorithms, in CRYPTO 2008 [32] (2008), 144–161. URL:
http://www.cosic.esat.kuleuven.be/publications/article-1150.pdf. Cita-
tions in this document: §7.

[20] Seokhi Hong, Tetsu Iwata, Fast software encryption, 17th international workshop,
FSE 2010, Seoul, Korea, February 7–10, 2010, revised selected papers, Lecture
Notes in Computer Science, 6147, Springer, 2010. ISBN 978-3-642-13857-7. See
[23].

[21] Bob Jenkins, SpookyHash: a 128-bit noncryptographic hash (2010). URL: http://
burtleburtle.net/bob/hash/spooky.html. Citations in this document: §1.

http://cr.yp.to/snuffle/security.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://eprint.iacr.org/2006/095
http://fastcrypto.org/umac/umac_proc.pdf
http://fastcrypto.org/umac/update.pdf
http://fastcrypto.org/umac/update.pdf
http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_UsenixSec2003.pdf
http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_UsenixSec2003.pdf
http://eprint.iacr.org/2007/338
http://eprint.iacr.org/2007/338
http://www.skein-hash.info/sites/default/files/skein1.1.pdf
http://www.skein-hash.info/sites/default/files/skein1.1.pdf
https://code.google.com/p/cityhash/
https://code.google.com/p/cityhash/
http://www.cosic.esat.kuleuven.be/publications/article-1150.pdf
http://burtleburtle.net/bob/hash/spooky.html
http://burtleburtle.net/bob/hash/spooky.html

18 Jean-Philippe Aumasson and Daniel J. Bernstein

[22] Bob Jenkins, Issue 4: CityHash128 isn’t thorough enough (2011). URL: https://
code.google.com/p/cityhash/issues/detail?id=4&can=1. Citations in this
document: §1.

[23] Dmitry Khovratovich, Ivica Nikolic, Rotational cryptanalysis of ARX, in FSE
2010 [20] (2010), 333–346. URL: http://www.skein-hash.info/sites/default/
files/axr.pdf. Citations in this document: §5.

[24] Alexander Klink, Julian Wälde, Efficient denial of service attacks on web applica-
tion platforms (2011). URL: http://events.ccc.de/congress/2011/Fahrplan/
events/4680.en.html. Citations in this document: §7.

[25] Ted Krovetz, Message authentication on 64-bit architectures, in [8] (2007), 327–
341. URL: http://eprint.iacr.org/2006/037. Citations in this document: §1.

[26] Xuejia Lai, Higher order derivatives and differential cryptanalysis, in [12] (1994),
227–233. Citations in this document: §5.

[27] Gaëtan Leurent, The ARX toolkit (2012). URL: http://www.di.ens.fr/

~leurent/arxtools.html. Citations in this document: §5.
[28] Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen, The

rebound attack: cryptanalysis of reduced Whirlpool and Grøstl, in FSE 2009 . See
[9].

[29] Kaisa Nyberg (editor), Fast software encryption, 15th international workshop,
FSE 2008, Lausanne, Switzerland, February 10–13, 2008, revised selected papers,
Lecture Notes in Computer Science, 5086, Springer, 2008. ISBN 978-3-540-71038-
7. See [2].

[30] Souradyuti Paul, Improved indifferentiability security bound for the JH mode,
Third SHA-3 Conference (2012). URL: http://csrc.nist.gov/groups/ST/hash/
sha-3/Round3/March2012/documents/papers/PAUL_paper.pdf. Citations in this
document: §4.

[31] Peter Schwabe, Bo-Yin Yang, Shang-Yi Yang, SHA-3 on ARM11 processors, Pro-
ceedings of Africacrypt 2012, to appear (2012). URL: http://cryptojedi.org/
papers/sha3arm-20120422.pdf. Citations in this document: §6.

[32] David Wagner (editor), Advances in cryptology—CRYPTO 2008, 28th annual in-
ternational cryptology conference, Santa Barbara, CA, USA, August 17–21, 2008,
proceedings, Lecture Notes in Computer Science, 5157, Springer, 2008. ISBN 978-
3-540-85173-8. See [19].

[33] Mark N. Wegman, J. Lawrence Carter, New classes and applications of hash
functions, in [1] (1979), 175–182; see also newer version [34]. URL: http://cr.
yp.to/bib/entries.html#1979/wegman.

[34] Mark N. Wegman, J. Lawrence Carter, New hash functions and their use in
authentication and set equality, Journal of Computer and System Sciences 22
(1981), 265–279; see also older version [33]. ISSN 0022-0000. MR 82i:68017. URL:
http://cr.yp.to/bib/entries.html#1981/wegman. Citations in this document:
§1.

[35] Michael Wiener (editor), Advances in cryptology—CRYPTO ’99, Lecture Notes in
Computer Science, 1666, Springer, 1999. ISBN 3-5540-66347-9. MR 2000h:94003.
See [10].

[36] Hongjun Wu, The hash function JH (2011). URL: http://www3.ntu.edu.sg/

home/wuhj/research/jh/jh_round3.pdf. Citations in this document: §4.

https://code.google.com/p/cityhash/issues/detail?id=4&can=1
https://code.google.com/p/cityhash/issues/detail?id=4&can=1
http://www.skein-hash.info/sites/default/files/axr.pdf
http://www.skein-hash.info/sites/default/files/axr.pdf
http://events.ccc.de/congress/2011/Fahrplan/events/4680.en.html
http://events.ccc.de/congress/2011/Fahrplan/events/4680.en.html
http://eprint.iacr.org/2006/037
http://www.di.ens.fr/~leurent/arxtools.html
http://www.di.ens.fr/~leurent/arxtools.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/PAUL_paper.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/PAUL_paper.pdf
http://cryptojedi.org/papers/sha3arm-20120422.pdf
http://cryptojedi.org/papers/sha3arm-20120422.pdf
http://cr.yp.to/bib/entries.html#1979/wegman
http://cr.yp.to/bib/entries.html#1979/wegman
http://cr.yp.to/bib/entries.html#1981/wegman
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

SipHash: a fast short-input PRF 19

A Test values

This appendix shows intermediate values of SipHash-2-4 hashing the 15-byte
string 000102· · · 0c0d0e with the 16-byte key 000102· · · 0d0e0f.

Initialization little-endian reads the key as

k0 = 0706050403020100

k1 = 0f0e0d0c0b0a0908

The key is then xored to the four constants to produces the following initial state
(v0 to v3, left to right):

7469686173716475 6b617f6d656e6665 6b7f62616d677361 7b6b696e727e6c7b

The first message block 0706050403020100 is xored to v3 to give

7469686173716475 6b617f6d656e6665 6b7f62616d677361 7c6d6c6a717c6d7b

and after two SipRounds the internal state is:

4d07749cdd0858e0 0d52f6f62a4f59a4 634cb3577b01fd3d a5224d6f55c7d9c8

Xoring the first message block to v0 concludes the compression phase:

4a017198de0a59e0 0d52f6f62a4f59a4 634cb3577b01fd3d a5224d6f55c7d9c8

The second and last block is the last seven message bytes followed by the
message’s length, that is, 0f0e0d0c0b0a0908. After xoring this block to v3, doing
two SipRounds, xoring it to v0 and xoring 00000000000000ff to v2, the internal
state is

3c85b3ab6f55be51 414fc3fb98efe374 ccf13ea527b9f442 5293f5da84008f82

After the four iterations of SipRound, the internal state is

f6bcd53893fecff1 54b9964c7ea0d937 1b38329c099bb55a 1814bb89ad7be679

and the four words are xored together to return a129ca6149be45e5.

B Computing the key of the Python hash function

The Python script below can be used to compute the key used in the function
hash() of a Python process. An example of usage is

$ python3 .2 -R poc.py

128 candidate solutions

verified solution: 58 df0aca50e7f48b 141 f57f820cbfefe

verified solution: d8df0aca50e7f48b 941 f57f820cbfefe

20 Jean-Philippe Aumasson and Daniel J. Bernstein

Note the equivalent keys, and the -R option.

solutions = []

mask = 0xffffffffffffffff

def bytes_hash(p, prefix , suffix):

if len(p) == 0: return 0

x = prefix ^ (ord(p[0])<<7)

for i in range(len(p)):

x = ((x * 1000003) ^ ord(p[i])) & mask

x ^= len(p) ^ suffix

if x == -1: x = -2

return x

def solvebit(h1 , h2 , prefix , bits):

f1 = 1000003

f2 = f1*f1

target = h1^h2^3

if bits == 64:

if ((f1*prefix)^(f2*prefix)^ target) & mask: return

suffix = h1^1^(f1*prefix)

suffix &= mask

solutions.append((prefix ,suffix))

else:

if ((f1*prefix)^(f2*prefix)^ target) & ((1<<bits)-1):

return

solvebit(h1,h2,prefix ,bits + 1)

solvebit(h1,h2,prefix + (1 << bits),bits + 1)

pass

h1 = hash("\0") & mask

h2 = hash("\0\0") & mask

h3 = hash("python") & mask

solvebit(h1, h2, 0, 0)

print("%d candidate solutions" % (len(solutions)))

for s in solutions:

if bytes_hash("python",s[0],s[1]) == hash("python") & mask:

ok=1

for i in range (10)[1:]:

if bytes_hash("\2"*i,s[0],s[1]) != hash("\2"*i) & mask:

ok=0

if ok: print("solution: %016x %016x" % (s[0],s[1]))

